One-Step Coordinating POPD in H3BTB-Sensitized EuMOF-Enabled Tunable Antenna Effects for Fluorescence Turn-On Sensing of Sarin Analogue Vapor (2025)

    Functional Nanostructured Materials (including low-D carbon)

    Other Access OptionsSupporting Information (1)

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2025, XXXX, XXX, XXX-XXX

    Click to copy citationCitation copied!

    https://pubs.acs.org/doi/10.1021/acsami.5c04451

    Published April 21, 2025

    Publication History

    • Received

    • Accepted

    • Revised

    • Published

      online

    research-article

    © 2025 American Chemical Society

    Request reuse permissions

    Abstract

    Click to copy section linkSection link copied!

    One-Step Coordinating POPD in H3BTB-Sensitized EuMOF-Enabled Tunable Antenna Effects for Fluorescence Turn-On Sensing of Sarin Analogue Vapor (4)

    The structural modification of metal–organic frameworks (MOFs) is of vital importance in many fields, especially in sensing with enhanced performance, while the efficient synthesis of functionalized MOF nanoparticles toward small molecule detection remains challenging. Here, a general cellulose nanofibril (CNF)-induced in situ one-step strategy was proposed for the synthesis of dual-ligand-functionalized europium-based MOF (EuMOF@CNF) nanoparticles under an effective regulation of the crystallization kinetics in hydrothermal synthesis. Based on the unique dual-ligand structure, the obtained EuMOF featured a tunable antenna effect and laid a good foundation for fluorescence-sensing materials. Benefiting from the superior self-assembly properties of CNFs and the tunable antenna effect of EuMOF@CNF, flexible sensing films were constructed, showing excellent mechanical properties (72 MPa for stress and 3.8% for strain) and tunable luminescence properties and achieving instant (1 s) and sensitive fluorescence sensing of sarin analogue vapor with a significantly low limit of detection (LOD, 2.8 ppb) and robust selectivity against a wide range of common interferents (>14 types), especially independent of common acids. We believe that this pioneering design of EuMOF with tunable antenna effects would positively advance the development of high-performance MOF-based fluorescent materials and devices.

    ACS Publications

    © 2025 American Chemical Society

    Subjects

    what are subjects

    Article subjects are automatically applied from the ACS Subject Taxonomy and describe the scientific concepts and themes of the article.

    • Carbon nanomaterials
    • Fluorescence
    • Fluorescence detection
    • Metal organic frameworks
    • Nanofibers

    Keywords

    what are keywords

    Article keywords are supplied by the authors and highlight key terms and topics of the paper.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Recommended

    Log in to Access

    You may have access to this article with your ACS ID if you have previously purchased it or have ACS member benefits. Log in below.

    • Purchase access

      Purchase this article for 48 hours $48.00 Add to cart

      Purchase this article for 48 hours Checkout

    Cited By

    Click to copy section linkSection link copied!

    This article has not yet been cited by other publications.

    Download PDF

    Get e-Alerts

    Get e-Alerts

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2025, XXXX, XXX, XXX-XXX

    Click to copy citationCitation copied!

    Published April 21, 2025

    Publication History

    • Received

    • Accepted

    • Revised

    • Published

      online

    © 2025 American Chemical Society

    Request reuse permissions

    Article Views

    47

    Altmetric

    -

    Citations

    -

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

    Recommended Articles

    One-Step Coordinating POPD in H3BTB-Sensitized EuMOF-Enabled Tunable Antenna Effects for Fluorescence Turn-On Sensing of Sarin Analogue Vapor (2025)

    References

    Top Articles
    Latest Posts
    Recommended Articles
    Article information

    Author: Pres. Lawanda Wiegand

    Last Updated:

    Views: 5450

    Rating: 4 / 5 (71 voted)

    Reviews: 86% of readers found this page helpful

    Author information

    Name: Pres. Lawanda Wiegand

    Birthday: 1993-01-10

    Address: Suite 391 6963 Ullrich Shore, Bellefort, WI 01350-7893

    Phone: +6806610432415

    Job: Dynamic Manufacturing Assistant

    Hobby: amateur radio, Taekwondo, Wood carving, Parkour, Skateboarding, Running, Rafting

    Introduction: My name is Pres. Lawanda Wiegand, I am a inquisitive, helpful, glamorous, cheerful, open, clever, innocent person who loves writing and wants to share my knowledge and understanding with you.